
Explore 10 Different Types of Software
Development Process Models

S.Thulasee Krishna 1,Dr. S.Sreekanth2 ,K.Perumal1, K.Rajesh Kumar Reddy1

1Dept of CSE
Kuppam Engineering College, Kuppam,

2Dept of MCA
Sitams, Chittoor, AP,India

Abstract— The development lifecycle of software Comprises of
four major stages namely Requirement Elicitation, Designing,
Coding and Testing. A software process model is the basic
framework which gives a workflow from one stage to the next.
This workflow is a guideline for successful planning,
organization and final execution of the software project.
Generally we have many different techniques and methods used
to software development life cycle. Project and most real word
models are customized adaptations of the generic models while
each is designed for a specific purpose or reason, most have
similar goals and share many common tasks. This paper will
explore the similarities and difference among these various
models.
Keywords—Rapid application development model, concurrent
development process model ,formal model ,CSDM

I. INTRODUCTION
Software processes performed during software Development
and evolution are becoming rather complex and resource-
intensive. They involve people who execute actions with the
primary goal to create quality software in accordance with the
previously set user requirements. only structured, carefully
guided and documented software processes can lead to the
stated goal. Constant monitoring and improvement of
software processes is therefore of a significant interest for
organizational performing software development and
maintenance. in order to improve the process an objective
description and evolution of the existing process is needed.
What is a software process models:
In contrast to software life cycle models, software process
models often represent a networked sequence of activities,
objects, transformations, and events that embody strategies
for accomplishing software evolution. Such models can be
used to develop more precise and formalized descriptions of
software life cycle activities. Their power emerges from their
utilization of a sufficiently rich notation, syntax, or
semantics, often suitable for computational processing.
Software process networks can be viewed as representing
multiple interconnected task chains [1]. Task chains represent
a non-linear sequence of actions that structure and transform
available computational objects (resources) into intermediate
or finished products. Non-linearity implies that the sequence
of actions may be non-deterministic, iterative, accommodate
multiple/parallel alternatives, as well as partially ordered to
account for incremental progress. Task actions in turn can be
viewed a non-linear sequences of primitive actions which
denote atomic units of computing work, such as a user's

selection of a command or menu entry using a mouse or
keyboard. Winograd and others have referred to these units of
cooperative work between people and computers as
"structured discourses of work" [2]. While task chains have
become popularized under the name of "workflow" .Task
chains can be employed to characterize either prescriptive or
descriptive action sequences. Prescriptive task chains are
idealized plans of what actions should be accomplished, and
in what order. For example, a task chain for the activity of
object-oriented software design might include the following
task actions:

o Develop an informal narrative specification of
the system.

o Identify the objects and their attributes.
o Identify the operations on the objects.
o Identify the interfaces between objects, attributes,

or operations.
o Implement the operations.

Clearly, this sequence of actions could entail multiple
iterations and non-procedural primitive action invocations in
the course of incrementally progressing toward an object-
oriented software design. Task chains join or split into other
task chains resulting in an overall production network or web.
The production web represents the "organizational production
system" that transforms raw computational, cognitive, and
other organizational resources into assembled, integrated and
usable software systems. The production lattice therefore
structures how a software system is developed, used, and
maintained. However, prescriptive task chains and actions
cannot be formally guaranteed to anticipate all possible
circumstances or idiosyncratic foul-ups that can emerge in the
real world of software development. Thus, any software
production web will in some way realize only an approximate
or incomplete description of software development.
Articulation work is a kind of unanticipated task that is
performed when a planned task chain is inadequate or breaks
down. It is work that represents an open-ended non-
deterministic sequence of actions taken to restore progress on
the disarticulated task chain, or else to shift the flow of
productive work onto some other task chain. Thus,
descriptive task chains are employed to characterize the
observed course of events and situations that emerge when
people try to follow a planned task sequence. Articulation
work in the context of software evolution includes actions

S. Thulasee Krishna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4580 - 4584

4580

people take that entail either their accommodation to the
contingent or anomalous behavior of a software system, or
negotiation with others who may be able to affect a system
modification or otherwise alter current circumstances. This
notion of articulation work has also been referred to as
software process dynamism.

II. TEN DIFFERENT SOFTWARE PROCESS MODELS
A. Waterfall Process Model
The Classical Life Cycle or the Waterfall Process Model [3]
was the first process model to present a sequential
framework, describing basic stages that are mandatory for a
successful software development model. It formed the basis
for most software development standards and consists of the
following phases: Requirements elicitation, Designing,
Implementation and Testing.
Advantages of waterfall model:

o Simple goal.
o Simple to understand and use.
o Clearly defined stages.
o Well understood milestones.
o Easy to arrange tasks.
o Process and results are Well documented.
o Easy to manage. Each phase has specific deliverable

and a review.
o Works well for projects where requirements are well

understood.
o Works well when quality is more important then

cost/schedule.
o Customers/End users already know about it.

Listed below are some flaws:

o Rigid design and inflexible procedure[4].
o Restricting back & forth movement from a later stage

to a former one. when new requirements surface
accommodating those with existing ones become
difficult due to restrictions in looping back to
prior stages.

o Waterfall Model faced “inflexible point
solutions” which meant that even small
amendments in the design were difficult to
incorporate later in design phase.

o As the requirements were frozen before moving to
the design phase, using the incomplete set of
requirement, a complete design was worked on. Such
an approach worked normally well for a small
project requiring average amendments. In case of
a large project, completing a phase and then moving
back to reconstruct the same phase, incurred a large
overhead [4].

o Once a phase is done, it is not repeated again that is
movement in the waterfall goes one to the next and the
vice versa is not supported. deadlines are difficult to
meet in case of large projects [9].

B. Prototype Model
In Prototype Model [6], the user is given a “look and feel” of
the system using a prototype. The prototype for the system to
be developed is built, tested and reworked as necessary.
Prototype process model is suitable for dynamic environment
where requirements change rapidly. The process begins with
gathering main functional requirements; this is followed by a
quick design leading to the development of a prototype. The
prototype is then evaluated by users and customers.
Developers rework on the prototype until the customer and
users are satisfied.
Advantages of prototype model:

o Users/customers own requirements.
o Instills customer confidence that the “right” product

is being built.
o Provides a good way to determine requirements

when t here uncertainty about what is needed.

 The prototype can face the following limitations:
o The main limitation of this model includes lack of

information about the exact number of iterations
and the time period required to upgrade
the prototype in order to bring it up to the
satisfaction of the user and the customer.

o Developers are in such a rush that they hardly
consider all the functionalities of the prototype. In
order to release the product as soon as possible, the
prototype with some additions is released on or
before the target release date. This happens due to
lack of user analysis activities; the end product
contains features the user is hardly aware how to
use.

o Often the developers make implementation
compromises in order to make the prototype work
quickly, which will lead to the use of
inappropriate operating system or programming
language [7].

o The premature prototypes lack key consideration
like security, fault tolerance, distributed
processing and other such key issues [9].

C. Incremental Development Model
In incremental development process [5], customers identify,
in outlined the services to be provided by the system. They
identify which of the services are most important and which
are least important to them. A number of delivery increments
are then defined which each increment providing a subset of
functional requirements. The highest priority functional
requirements are delivered first.

Advantages of incremental development model:

o Some working functionality can be developed
quickly and early in the life cycle.

o Results are obtained early and periodically.
o Parallel development can be planned.
o Progress can be measured.
o Less costly to change the scope/requirements.

S. Thulasee Krishna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4580 - 4584

4581

o Testing and debugging during smaller iteration is
easy.

o Risks are identified and resolved during an iteration;
and each iteration is an easily managed milestone.

o Easier to manage risk - High risk part is done first.
o With every increment operational product is

delivered.
o Issues, challenges & risks identified from each

increment can be utilized/applied to the next
increment.

The disadvantages of the model are:
o It is difficult to map requirements

directly to different increments.
Include excessive user involvement.
Poorly defined scope as scope of the product may
vary increment to increment.

o An overhead in the model is rapid context
switching between various activities. Each
iteration is followed by an evaluation ensuring that
user requirements have been met [8]. This
evaluation after each iteration is time consuming.

D. Spiral Model
In Spiral model [10], instead of presenting a sequence of
activities with some backtracking from one activity to the
other, the process model followed a spiral organization of
activities. It combines characteristics of both prototype and
waterfall process model. The model is divided into some task
regions, which are as follows: Customer Communication,
Planning, Risk Analysis, and Engineering, Construction and
release and Customer evaluation. The distinctive feature of
this model is that each stage is controlled by a specific risk
management criteria ensuring decision making using critical
factors. .
Advantages of spiral model:

o Changing requirements can be accommodated.
o Allows for extensive use of prototypes
o Requirements can be captured more accurately.
o Users see the system early.
o Development can be divided in to smaller parts and

more risky parts can be developed earlier which
helps better risk management.

The following disadvantages are identified in this model:
o A number of risks, constraints, alternatives,

models etc. need to be analyzed but never are
these risks or objectives listed and no specific risk
analysis technique is mentioned. If risk analysis is
poor the end product will surely suffer.

o Another difficulty of the spiral model is adjustment
of contract deadlines using the spiral model.Risk
analysis expertise is vital. For large projects expert
software developers can produce efficient software
products but in case of a complex large project
absence of specific risk analysis techniques and
presence of varying expertise can create a chaos
[10].

E. Rapid Application Development Model
The RAD model [11] is an adaptation of the classical model
for achieving rapid development using component based
construction. If requirements are well understood with a well
constrained project scope, the RAD process enables delivery
of the fully function system. The model is considered to be
incremental development model and that have emphasis on
short development cycle.
Advantages of rapid application development model:

o Time to deliver is less.
o Changing requirements can be accommodated.
o Progress can be measured.
o Cycle time can be short with use of powerful RAD

tools.
o Productivity with fewer people in short time.
o Use of tools and frameworks.

 Rapid Application Development has following drawbacks:
o Reduced features occur due to time boxing, where

features are delayed to later versions in order to
deliver basic functionality within abbreviated time.

o Reduced scalability occurs because a RAD
developed application starts as a prototype and
evolves into a finished application using existing
component and their integration.

o RAD, for large projects, requires a Sufficient
number of human resources also requiring
existence of components for reuse. Also RAD is
not suitable for all types of application
development [11].

o High technical risks discourage RAD use. This is
because use of new technology in a software is
difficult in a changing global software market [11].

F. Rational Unified Process Model
The RUP [5] provides dynamic, static and practice
perspectives of a product. The RUP provides each team
member with the guidelines, templates and tool mentors
necessary for the entire team to take full advantage of the best
practices. The software lifecycle is broken into cycles, each
cycle working on a new generation of the product.
This phased model identifies four discrete phases:

o Inception phase
o Elaboration phase
o Construction phase
o Transition phase

Advantages of Rational unified process model:
o This is a complete methodology in itself with an

emphasis on accurate documentation.
o It is proactively able to resolve the project risks

associated with the client's evolving
requirements requiring careful change request
management.

The identified drawbacks of the process are:
o Each phase has a milestone which needs to be

satisfied for the next particular phase to start.

S. Thulasee Krishna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4580 - 4584

4582

o If the respective milestone of the particular phase
is not satisfied the entire project might get cancelled
or re-engineered before proceeding further.

o The satisfaction criteria of a particular milestone
has its own constraints and are not listed
specifically [12].

G. The V-Model
The V-Model [13] is an extension to the Waterfall Model in
that it does not follow a sequential mode of execution rather
it bends upward after the coding phase to form V shape.
Advantages of V-model:

o The users of The V-Model participate in the
development and maintenance of The V-Model. A
change control board publicly maintains the V-
Model. The change control board meets once a year
and processes all received change requests on The
V-Model.

o At each project start, the V-Model can be tailored
into a specific project V-Model, this being possible
because the V-Model is organization and project
independent.

o The V-Model provides concrete assistance on how
to implement an activity and its work steps, defining
explicitly the events needed to complete a work step:
each activity schema contains instructions,
recommendations and detailed explanations of the
activity.

It has the following drawbacks;
o It addresses software development within a project

rather than a whole organization.
o The V-Model is not complete as it argues to be, as

it covers all activities at too abstracts level.

H. Concurrent Engineering Model
The concurrent development model sometimes called
concurrent engineering model can be represented
schematically as a series of frame work activities, software
engineering action and task, and their associated status .
Provide a schematic representation of one software
engineering task with in the modeling activities for the
concurrent process model. The activity-modeling may be in
any one of the states noted at any given time. Similarly, other
activities or task can be represented in an analogous manner.
All activities exist concurrently but reside in different states
.its first iteration and exist in the waiting changes state. The
modeling activities which existed in the none state while
initial communication was completed, now makes a transition
into the under development state. if, however, the customer
indicates that changes in requirements must be made, the
modeling activities moves from the under development states
into the awaiting changes states. The concurrent process
model defines a series of events that will trigger transition
from state to state for each of the software engineering
activities, actions, or tasks. The concurrent model is
applicable to all types of software development and provides

an accurate picture of the current state of a project. Rather
than confining software engineering activities, actions, or
task on the network exists simultaneously with other
activities, actions, or tasks. Events generated at one point in
the process network trigger transitions among the states.

Advantages of concurrent engineering model :

o The concurrent development model, some times
called concurrent engineering. It’s can be
represented schematically as a series of frame work
activities, software engineering actions, software
engineering task and their associated states.

o The concurrent process model defines a series of
events that will trigger transition from state to state
for each of the software engineering activities and
action or task.

o The concurrent process model is applicable to all
types of software development and provides an
accurate picture of the current state of a project.

The identified drawbacks of the process are:

o The SRS must be continually updated to reflect
changes.

o It requires discipline to avoid adding too many new
features too late in the project.

I. Confident Software Development Process Model

The Confident process model which we have proposed has
seven phases, namely; Feasibility study/Requirement,
Requirement Based Analysis, Logical Design, Confident
Code, Logical Testing, Implementation & Deployment, and
Maintenance. It is a flexible model not restricting the
developers enabling them to move both Front and back from
any given stage to any other stage during its lifecycle. Each
phase is further divided into sub phases, each specifying a
criterion which has to be met to move to the next phase.

 Advantages of Confident development process model:

o all upcoming requirements to be frozen and to be
accommodated in later versions of the product.

o we haven’t frozen requirement phase, one can move
easily from design phase to requirement phase if a
new requirement(s) surfaces.

 These identified drawbacks of the confident development
process are:

J. The Formal model
The formal methods model encompasses a set of activities
that leads to formal mathematical specification of computer
software formal methods enable a software engineer to
specify, develop, and verify a computer-based system by
applying a rigorous. When formal methods are used during
development, they provide a mechanism for eliminating
many of the problem that are difficult to overcome using
other software engineering cardiogram

S. Thulasee Krishna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4580 - 4584

4583

Advantages of formal model :
o Formal specification encourage rigour. Often , the

very process of construction of arigorou.
Specification is more important then formal
specification .

o Formal methods usually have a founded mathematic
basis.

o Formal methods have well defined semantics
therefore , ambiguity in specification automatically
avoided when one formally specifies a system.

o Formal specification can be executed to obtain
immediate feedback on the future of the specified
system [14].

These identified drawbacks of the process are:
o The development of formal models is currently quite

time consuming and expensive
o It is difficult to use the models as a communication

mechanism for technically unsophisticated
customers.

III. CONCLUSION

The paper has demonstrated ,it proved useful for process
comprehension and analysis through simulation and
validation. Model simulation can be used to identify
processes flaws deficiencies and bottlenecks, to estimate the
impact of potential changes to the process and to compare
alternative process models without putting the new process
into practice. This paper is very very useful to the developers

REFERENCES:

[1] Kling, R., and W. Scacchi, The Web of Computing: Computer
Technology as Social Organization, Advances in Computers,
21, 1-90, Academic Press, New York, 1982.

[2] Winograd, T. and F. Flores, Understanding Computers and
Cognition: A New Foundation for Design, Ablex
Publishers, Lexington, MA, 1986.

[3] W.W. Royce, “Managing the Development of Large Software
Systems: Concepts and Techniques”, IEEE, IEEE Computer
Society, August 1970, pp. 1-9.

[4] B.W. Boehm, “A Spiral Model for Software Development
and Enhancement”, IEEE, IEEE Computer Society, vol. 21, issue
5, May 1988, pp. 61 – 72.

[5] Ian Sommerville, “ Software Engineering”, 8th Edition, 2006, pp.
89.

[6] R.J. Madachy, “Software Process Dynamics”, New Jersey:
Willey Inter science, 2007, pp. 31.

[7] R.S. Pressman, “Software Engineering, A Practitioner’s Approach”,
5th ed. New York: McGraw-Hill, 2001, pp. 32.

[8] E.I. May, B. A. Zimmer, “The Evolutionary Development Model
for Software”, Hewlett-Packard Journal, Article 4, August 1996, pp.
1-8.

[9] B.W. Boehm, “Anchoring the Software Process”, IEEE, IEEE Software,
vol. 13, issue 4, July 1996, pp. 73-83.

[10] R.J. Madachy, “Software Process Dynamics”, New Jersey: Willey
Inter science, 2007, pp. 33.

[11] R.S. Pressman, “Software Engineering, A Practitioner’s Approach”, 5th
ed. New York: McGraw-Hill, 2001, pp. 34.

[12] P. Kruchten, “Rational Unified Process Best Practices for
Software Development Teams”, Canada: rational Software, 2001.

[13] Jeff Tian, Southern Methodist University, Dallas, “Software
Quality Engineering”, IEEE, Computer Society Publication, Willy
Inter Science, 2005.

[14] Rajib Mall, “Fundamental of software engineering “ 2 nd edition .
prentice- hall, pp. 101-102.

AUTHORS:

S.THULASI KRISHNA received the B.Tech.
Degree in Computer Science and Engineering from
Jawaharlal Nehru University ,Hyderabad, India in
2005, M.E from Sathyabama University Chennai
,and Ph.D pursing from Rayalaseema University
,Kurnool. He joined as Asst.professor in VIST
Engineering College in august 2005, Hyderabad.
He was worked as Asso.Professor in Vidyanikethan

Engineering College Tirupathi. And currently working as Associate
Professor in Kuppam Engineering College. He is member of International
Association of Engineering.

Dr. S. SREEKANTH has obtained Ph.D. Degree
from S.V.University, Tirupathi. He is working as a
Professor & Director in MCA Department,
SITAMS, Chittoor, Andhra Pradesh, with the
experience of 16 years. He has published 13
research papers both in international and national
journals of computer science.

K.RAJESH KUMAR REDDY received the
B.Tech. Degree in Computer Science and
Engineering from Jawaharlal Nehru University,
Anantapur in 2009, M.Tech from Jawaharlal
Nehru University, Anantapur in 2011 and
currently working as Assistant Professor in
Kuppam Engineering College. He is member of
International Association of Engineering.

K.PERUMAL received the B.E degree in
Information technology from Anna University,
Chennai in 2010,and M.E pursing from Anna
University. He is working as Asst.Professor in
Kuppam Engineering College.

S. Thulasee Krishna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4580 - 4584

4584

